除了總體平均值的置信區(qū)間估計(jì)之外,通常還需要預(yù)測未來個(gè)體值的結(jié)果。
雖然平均預(yù)測區(qū)間的形式與置信區(qū)間估計(jì)相似,但對預(yù)測區(qū)間的理解是不同的。預(yù)測區(qū)間是對可觀察的未來個(gè)體值X1的估計(jì),而不是對未知總體參數(shù)μ的估計(jì)。因?yàn)镸initab和JMP現(xiàn)在無法計(jì)算預(yù)測區(qū)間,所以預(yù)測區(qū)間如公式1所示:
式1
回到保險(xiǎn)申請?zhí)幚頃r(shí)間的例子(在此《均值的置信區(qū)間估計(jì)(σ未知)》文章)中來,假設(shè)我們未來需要建立個(gè)人保險(xiǎn)申請?zhí)幚頃r(shí)間95%的預(yù)測區(qū)間估計(jì)。使用公式2:
式2
因此,我們預(yù)測未來個(gè)人保險(xiǎn)申請的辦理時(shí)間為11.22-76.86天,概率為95%。這個(gè)結(jié)果明顯不同于均值的置信區(qū)間估計(jì)。因?yàn)槲覀児烙?jì)的是未來的個(gè)人價(jià)值,而不是整個(gè)人口的平均值,所以預(yù)測區(qū)間足夠?qū)挕?/p>
2.比例的置信區(qū)間估計(jì)
因子的置信區(qū)間估計(jì)可用于估計(jì)給定類別中事件的概率。樣本均值可以用來估計(jì)總體均值,這里我們可以利用事件的樣本比例(P)來估計(jì)總體比例(π)。
樣本統(tǒng)計(jì)量p服從二項(xiàng)分布,在大多數(shù)情況下可以用正態(tài)分布來近似。
為了說明比例的置信區(qū)間估計(jì),我們可以考察大城市報(bào)紙質(zhì)量工程師面臨的問題。在報(bào)紙生產(chǎn)過程中,一個(gè)重要的質(zhì)量特征與印刷報(bào)紙的比例有關(guān),盡管存在許多不一致的因素,如印刷過剩、頁面設(shè)置不合理、缺頁或多頁等。因?yàn)闇y試每份報(bào)紙是不現(xiàn)實(shí)的(耗時(shí)且昂貴),所以隨機(jī)抽取了200份報(bào)紙作為研究和使用的樣本。假設(shè)有35個(gè)樣本,容量為200,在某種程度上質(zhì)量問題最多。下表是Minitab對存在質(zhì)量問題的報(bào)紙比例的95%置信區(qū)間估計(jì):
因此,所有置信區(qū)間的95%來自200份報(bào)紙的隨機(jī)樣本,這將包括總體比例。由于總比例未知,12.2% ~ 22.8%的區(qū)間可能是包含總比例的95%的區(qū)間,而建立無總比例區(qū)間的概率為5%。
對于給定的樣本量,比例的置信區(qū)間通常比其他測量變量更寬。對于連續(xù)變量,通過測量其概率獲得的信息比分類變量獲得的信息多。換句話說,分類變量只有兩個(gè)可能的值,這與連續(xù)變量的概率度量相比是粗略的。因此,分類變量的測量只能為估計(jì)的參數(shù)提供很少的信息。
下一篇:如何進(jìn)行流程圖分析